Login / Signup

Pathogen Receptor Membrane-Coating Facet Structures Boost Nanomaterial Immune Escape and Antibacterial Performance.

Xuan HouHui ZengXue ChiXiangang Hu
Published in: Nano letters (2021)
Nanomaterials show great potential for the treatment of bacterial infections, but their effects remain limited by low antibacterial efficiency and immune clearance. Facet-dependent nanozymes coated with pathogen receptor membranes were fabricated, providing an approach for producing superphotothermal antibacterial nanomaterials with high biocompatibility and low immune clearance. (100)- and (112)-Faceted CuFeSe2 presented excellent photothermal conversion efficiency (46%). However, the peroxidase-like activity of (100)-faceted CuFeSe2 enhanced the decomposition of H2O2 to hydroxyl radicals (•OH) and was markedly greater than that of (112)-faceted CuFeSe2, with nearly 100% of Staphylococcus aureus being killed under near-infrared (NIR) irradiation. Importantly, bacteria-pretreated immune membranes (i.e., pathogen receptor membranes) coated with CuFeSe2 exhibited superior S. aureus-binding ability, presented obvious immune-evading capability, and resulted in targeted delivery to infected sites. As a proof-of-principle demonstration, these findings hold promise for the use of pathogen receptor membrane-coated facet-dependent nanomaterials in clinical applications and the treatment of bacterial infections.
Keyphrases