Login / Signup

Green Synthesis of Silver Nanoparticles Using Allium cepa var. Aggregatum Natural Extract: Antibacterial and Cytotoxic Properties.

Jayashree ShanmugamManikandan DhayalanMohammed Riyaz Savaas UmarMayakkannan GopalMoonis Ali KhanBernabé Nuñez-EstevezAntonio Cid Samamed
Published in: Nanomaterials (Basel, Switzerland) (2022)
The chemical content of plant excerpts can be efficiently employed to reduce the metal ions to nanoparticles in the one-pot green production method. Here, green production of silver nanoparticles (AC-AgNPs) is performed by means of Allium cepa var. Aggregatum (shallot) extract as a stabilizer and reducer. The shape, size, and morphology of resultant AC-AgNPs are examined by optical spectroscopy analysis such as UV for nucleation and coalescence processes of the AC-AgNPs. Through FTIR functional group is determined and through DLS size is defined, it was confirmed that metallic AgNPs were successfully synthesized through the green synthesis route, and these results agreed well with the results obtained in the XRD pattern along with TEM spectroscopy, where the TEM images confirm the formation of sphere-like nanostructures along with SAED analysis. The chemical characterization is performed with XPS; the obtained molecular species in the materials are determined from the energy profile. Antioxidant activity of AC-AgNPs versus DPPH substrate is carried out. Antibacterial activity is well established against Gram-negative and Gram-positive organisms. Cell viability is accomplished, followed by an MTT assay, and a cytotoxicity assay of AC-AgNPs on MCF-7 cell lines is also carried out. Highlights: (1). This study highlights the eco-friendly synthesis of silver nanoparticles from Allium cepa var. Aggregatum Natural Extract. (2). The synthesized AC-AgNPs were characterized by UV-VIS, FT-IR, XRD, TEM, and XPS. (3). The synthesized nanoparticles were well dispersed in nature and the size range of 35 ± 8 nm. (4). The anti-candidal activity of biosynthesized silver nanoparticles was evaluated against the following Gram-Negative organisms: Escherichia coli ( E. coli ), and the following Gram-positive organisms: Staphylococcus aureus strains. The biosynthesized AC-AgNPs showed enhanced antiseptic features anti both Gram-positive and negative organisms. (5). Besides, the in vitro cytotoxic outcomes of AC-AgNPs were assessed versus MCF-7 cancerous cells, and the reduction in the feasibility of cancer cells was established via MTT assay, which suggests potential biomedical applications.
Keyphrases