The Differentially Expressed Genes Responsible for the Development of T Helper 9 Cells From T Helper 2 Cells in Various Disease States: Immuno-Interactomics Study.
Manoj KhokharPurvi PurohitAshita GadwalSojit TomoNitin Kumar BajpaiRavindra ShuklaPublished in: JMIR bioinformatics and biotechnology (2023)
This study identified hitherto unexplored possible associations between Th9 and disease states. Some important ILs, including CCL1 (chemokine [C-C motif] ligand 1), CCL20 (chemokine [C-C motif] ligand 20), IL-13, IL-4, IL-12A, and IL-9; receptors, including IL-12RB1, IL-4RA (interleukin 9 receptor alpha), CD53 (cluster of differentiation 53), CD6 (cluster of differentiation 6), CD5 (cluster of differentiation 5), CD83 (cluster of differentiation 83), CD197 (cluster of differentiation 197), IL-1RL1 (interleukin 1 receptor-like 1), CD101 (cluster of differentiation 101), CD96 (cluster of differentiation 96), CD72 (cluster of differentiation 72), CD7 (cluster of differentiation 7), CD152 (cytotoxic T lymphocyte-associated protein 4), CD38 (cluster of differentiation 38), CX3CR1 (chemokine [C-X3-C motif] receptor 1), CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha), CTLA28, and CD196 (cluster of differentiation 196); and TFs, including FOXP3 (forkhead box P3), IRF8 (interferon regulatory factor 8), FOXP2 (forkhead box P2), RORA (RAR-related orphan receptor alpha), AHR (aryl-hydrocarbon receptor), MAF (avian musculoaponeurotic fibrosarcoma oncogene homolog), SMAD6 (SMAD family member 6), JUN (Jun proto-oncogene), JAK2 (Janus kinase 2), EP300 (E1A binding protein p300), ATF6 (activating transcription factor 6), BTAF1 (B-TFIID TATA-box binding protein associated factor 1), BAFT (basic leucine zipper transcription factor), NOTCH1 (neurogenic locus notch homolog protein 1), GATA3 (GATA binding protein 3), SATB1 (special AT-rich sequence binding protein 1), BMP7 (bone morphogenetic protein 7), and PPARG (peroxisome proliferator-activated receptor gamma, were able to identify significant differentially altered genes in the conversion of Th2 to Th9 cells. We identified some common miRs that could target the DEGs. The scarcity of studies on the role of Th9 in metabolic diseases highlights the lacunae in this field. Our study provides the rationale for exploring the role of Th9 in various metabolic disorders such as diabetes mellitus, diabetic nephropathy, hypertensive disease, ischemic stroke, steatohepatitis, liver fibrosis, obesity, adenocarcinoma, glioblastoma and glioma, malignant neoplasm of stomach, melanoma, neuroblastoma, osteosarcoma, pancreatic carcinoma, prostate carcinoma, and stomach carcinoma.
Keyphrases
- binding protein
- transcription factor
- nk cells
- clinical trial
- type diabetes
- rheumatoid arthritis
- squamous cell carcinoma
- gene expression
- dendritic cells
- cell proliferation
- systemic lupus erythematosus
- dna methylation
- skeletal muscle
- genome wide identification
- cell death
- systemic sclerosis
- idiopathic pulmonary fibrosis
- protein protein
- protein kinase
- rectal cancer
- locally advanced
- high grade
- weight gain
- bioinformatics analysis