Login / Signup

A sulfonate ligand-defected Zr-based metal-organic framework for the enhanced selective removal of anionic dyes.

Ha V LeNhi T VoHoan T PhanThu M DaoBao G NguyenTung Thanh NguyenPhuoc Hoang HoKhoa D Nguyen
Published in: RSC advances (2024)
In this work, we introduce a novel defective analogue of the representative 6-connected zirconium-based metal-organic framework (MOF-808), by employing 5-sulfoisophthalic acid monosodium salt (H 2 BTC-SO 3 Na) as a defect inducer via a mixed-linker approach. The structural integrity and different physicochemical properties were investigated by various characterization techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen physisorption at 77 K. Additionally, proton nuclear magnetic resonance ( 1 H-NMR), energy-dispersive X-ray (EDX), and inductively coupled plasma optical emission spectroscopy (ICP-OES) were employed to confirm the presence of 6.9 mol% of the 5-sulfoisophthalate ligand within the highly crystalline MOF-808 structure. The defective material exhibited significant enhancements in the removal efficiency of various organic dyes, including approximately 64% and 77% for quinoline yellow and sunset yellow, and 56% and 13% for rhodamine B and malachite green, compared to its pristine counterpart. Importantly, the defective MOF-808 showed a remarkable selectivity toward anionic species in binary-component dyes comprising both anionic and cationic dyes.
Keyphrases