Alzheimer's disease is a neurodegenerative disorder accounting for 60-80% of dementia cases and is accompanied by a high mortality rate in patients above 70 years of age. The formation of senile plaques composed of amyloid-β protein is a hallmark of Alzheimer's disease. Beta-site APP cleaving enzyme 1 (BACE1) is a proteolytic enzyme involved in the degradation of amyloid precursor protein, which further degrades to form toxic amyloid-β fragments. Hence, inhibition of BACE1 was stated to be an effective strategy for Alzheimer's therapeutics. Keeping in mind the structures of different BACE1 inhibitors that had reached the clinical trials, we designed a library of compounds (total 164) based on a substituted 5-amino tetrazole scaffold which was an isosteric replacement of the cyclic amidine moiety, a common component of the BACE1 inhibitors which reached the clinical trials. The scaffold was linked to different structural moieties with the aid of an amide or sulfonamide bond to design some novel molecules. Molecular docking was initially performed and the top 5 molecules were selected based on docking scores and protein-ligand interactions. Furthermore, molecular dynamic simulations were performed for these molecules (3g, 7k, 8n, 9d, 9g) for 100 ns and MM-GBSA calculations were performed for each of these complexes. After critical evaluation of the obtained results, three potential molecules (9d, 8n, and 7k) were forwarded for prolonged stability studies by performing molecular dynamic simulations for 250 ns and simultaneous MM-GBSA calculations. It was observed that the compounds (9d, 8n, and 7k) were forming good interactions with the amino acid residues of the catalytic site of the enzyme with multiple non-covalent interactions. In MD simulations, the compounds have shown better stability and better binding energy throughout the runtime.
Keyphrases
- molecular docking
- molecular dynamics
- molecular dynamics simulations
- amino acid
- clinical trial
- monte carlo
- protein protein
- density functional theory
- cognitive decline
- end stage renal disease
- mild cognitive impairment
- binding protein
- small molecule
- ejection fraction
- chronic kidney disease
- newly diagnosed
- prognostic factors
- dengue virus
- high resolution
- cardiovascular events
- patient reported outcomes
- risk assessment
- single molecule
- cognitive impairment
- coronary artery disease
- tissue engineering