Login / Signup

Electrically Tunable Antiferroelectric to Paraelectric Switching in a Semiconductor.

Hui BaiXianli SuQingjie ZhangCtirad UherXinFeng TangJinsong Wu
Published in: Nano letters (2022)
The monoclinic α-Cu 2 Se phase is the first multipolar antiferroelectric semiconductor identified recently by electron microscopy. As a semiconductor, although there are no delocalized electrons to form a static macroscopic polarization, a spontaneous and localized antiferroelectric polarization was found along multiple directions. In conventional ferroelectrics, the polarity can be switched by an applied electric field, and a ferroelectric to paraelectric transition can be modulated by temperature. Here, we show that a reversible and robust antiferroelectric to paraelectric switching in a Cu 2 Se semiconductor can be tuned electrically by low-voltage and high-frequency electric pulses, and the structural transformations are imaged directly by transmission electron microscopy (TEM). The atomic mechanism of the transformation was assigned to an electrically triggered cation rearrangement with a low-energy barrier. Due to differences of the antiferroelectric and paraelectric phases regarding their electrical, mechanical, and optical properties, such an electrically tunable transformation has a great potential in various applications in microelectronics.
Keyphrases
  • electron microscopy
  • high frequency
  • room temperature
  • transcranial magnetic stimulation
  • energy transfer
  • metal organic framework
  • aqueous solution
  • human health
  • quantum dots