Login / Signup

Stratification of mixtures in evaporating liquid films occurs only for a range of volume fractions of the smaller component.

Richard P Sear
Published in: The Journal of chemical physics (2018)
I model the drying of a liquid film containing small and big colloid particles. Fortini et al. [Phys. Rev. Lett. 116, 118301 (2016)] studied these films with both computer simulation and experiment. They found that at the end of drying, the mixture had stratified with a layer of the smaller particles on top of the big particles. I develop a simple model for this process. The model has two ingredients: arrest of the diffusion of the particles at high density and diffusiophoretic motion of the big particles due to gradients in the volume fraction of the small particles. The model predicts that stratification only occurs over a range of initial volume fractions of the smaller colloidal species. Above and below this range, the downward diffusiophoretic motion of the big particles is too slow to remove the big particles from the top of the film, and so there is no stratification. In agreement with earlier work, the model also predicts that large Péclet numbers for drying are needed to see stratification.
Keyphrases
  • big data
  • room temperature
  • ionic liquid
  • mass spectrometry
  • reduced graphene oxide
  • carbon nanotubes
  • virtual reality