Modulation of Bcl-x Alternative Splicing Induces Apoptosis of Human Hepatic Stellate Cells.
Lin WuChengqiong MaoXin MingPublished in: BioMed research international (2016)
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver diseases. Activation and proliferation of hepatic stellate cells (HSCs) represent a key aspect of fibrogenesis and are associated with progressive reduction of HSC apoptosis. Bcl-x, an antiapoptotic member of Bcl-2 gene family, plays a role in apoptosis regulation in mammalian cells. Through alternative splicing, the Bcl-x gene yields two major protein isoforms with opposing functions, antiapoptotic Bcl-xL and proapoptotic Bcl-xS. This study aimed to investigate the role of Bcl-x and its alternate splicing in HSC apoptosis. The results indicated that the expression of Bcl-xL was dramatically higher than Bcl-2 in activated human HSCs. The relative expression of Bcl-xL over Bcl-xS increased gradually when HSCs were activated in cell culture, which was consistent with the increase in apoptosis resistance of activated HSCs. Redirection of Bcl-x splicing by an antisense oligonucleotide from the antiapoptotic isoform to the proapoptotic isoform induced death of HSCs without other apoptosis stimuli. We conclude that Bcl-x plays a role in regulation of HSC apoptosis and modulation of Bcl-x alternative splicing may become a novel molecular therapy for liver fibrosis.