An Interface Heterostructure of NiO and CeO2 for Using Electrolytes of Low-Temperature Solid Oxide Fuel Cells.
Junjiao LiJun XieDongchen LiLei YuChaowei XuSenlin YanYuzheng LuPublished in: Nanomaterials (Basel, Switzerland) (2021)
Interface engineering can be used to tune the properties of heterostructure materials at an atomic level, yielding exceptional final physical properties. In this work, we synthesized a heterostructure of a p-type semiconductor (NiO) and an n-type semiconductor (CeO2) for solid oxide fuel cell electrolytes. The CeO2-NiO heterostructure exhibited high ionic conductivity of 0.2 S cm-1 at 530 °C, which was further improved to 0.29 S cm-1 by the introduction of Na+ ions. When it was applied in the fuel cell, an excellent power density of 571 mW cm-1 was obtained, indicating that the CeO2-NiO heterostructure can provide favorable electrolyte functionality. The prepared CeO2-NiO heterostructures possessed both proton and oxygen ionic conductivities, with oxygen ionic conductivity dominating the fuel cell reaction. Further investigations in terms of electrical conductivity and electrode polarization, a proton and oxygen ionic co-conducting mechanism, and a mechanism for blocking electron transport showed that the reconstruction of the energy band at the interfaces was responsible for the enhanced ionic conductivity and cell power output. This work presents a new methodology and scientific understanding of semiconductor-based heterostructures for advanced ceramic fuel cells.