Login / Signup

Dynamics of Confined Microgel Liquids: Weakened Spatial Confinement Effect by Microgel Particle Compliance.

Raymond P SeekellKehua LinYingxi Zhu
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
Spatial confinement has a great impact on the structures and dynamics of interfacial molecular and polymer liquid films. Most prior research has focused on confined liquids of fixed material compliance and often treated them in approximation to the "hard-sphere" interaction model. In this study, we microscopically investigate the structural dynamics of highly deformable poly(N-isopropylacrylamide) (PNIPAM) microgels confined between two solid surfaces in comparison to that of nearly nondeformable microgels of the same chemistry. We observe that the mobility and structural relaxation of highly deformable PNIPAM microgels at an apparent volume fraction, ϕ = 0.49-0.70, show little change with the reduction of gap spacing, in stark contrast to confinement-induced dynamic retardation of "hard-sphere"-like stiff PNIPAM microgels. The critical gap spacing, defined as the onset of confinement effect to deviate from the bulk behavior, is found to be approximately 17-22 particle layers for highly deformable microgels of ϕ = 0.56-0.70, much smaller than that of approximately 40 particle layers or larger for stiff microgels or model "hard-sphere" colloidal liquids of similar ϕ. Additionally, we observe no evident confinement-enhanced structural reorganization of deformable microgels near the confining surfaces when gap spacing approaches the critical gap spacing. Microgel deformation upon strong confinement is attributed to the disrupted confinement-induced ordering of confined microgels. Hence, it is clearly indicated that spatial confinement exhibits a much weaker effect on highly compliant microgel particles than stiff ones, resulting in a significantly less reduction in microgel interfacial dynamics. It therefore gives insights into the molecular design of polymeric thin films of variable compliance to control friction and lubrication.
Keyphrases
  • ionic liquid
  • high glucose
  • single molecule
  • high resolution
  • magnetic resonance imaging
  • endothelial cells
  • resting state
  • cancer therapy
  • drug induced
  • drug release