Login / Signup

Sulfolane Crystal Templating: A One-Step and Tunable Polarity Approach for Self-Assembled Super-Macroporous Hydrophobic Monoliths.

Chunjie LiuDong WangZimeng WangHaiyan ZhangLiang ChenZhong Wei
Published in: ACS applied materials & interfaces (2022)
Freeze-casting (ice templating) is generally used to prepare super-macroporous materials. However, water solubility limits the application of freeze-casting in hydrophobic material fabrication. In the present work, inexpensive and low-toxic sulfolane was used as a novel crystallization-induced porogen (sulfolane crystal templating) to prepare super-macroporous hydrophobic monoliths (cryogels) with tunable polarity. The phase transition of sulfolane consisted of reversible processes in the liquid, semi-crystalline, and crystalline states. Because of the density change during phase transition, liquid sulfolane experienced a 16.4% volume shrinkage per unit mass. Thus, the cryogels obtained using the conventional freezing method contained obvious hollow-shaped defects. Furthermore, a novel route of pre-cooling, pre-crystallization, crystal growth, freezing, and thawing (PPCFT) was employed to prepare cryogels with defect-free macroscopic morphology and uniform pore structure. The as-obtained cryogels were composed of a super-macroporous structures and interconnected channels, and their porosity ranged between 85 and 97%. Moreover, the cryogels manifested good hydrophobicity (contact angle = 120-130°) and had absorption capacities greater than 10 g g -1 for oils and organic liquids. The maximum absorption capacities of the resultant cryogels in dichloromethane, ethyl acetate, and liquid paraffin were 60.3, 35.8, and 15.2 g g -1 , respectively. Moreover, sulfolane could conveniently dissolve hydrophobic and hydrophilic monomers to generate amphiphilic cryogels (contact angle = 130-0°). Therefore, sulfolane crystal templating is a potential fabrication method for super-macroporous hydrophobic materials with tunable polarity.
Keyphrases
  • ionic liquid
  • room temperature
  • high resolution
  • aqueous solution
  • solid state
  • risk assessment
  • high glucose
  • endothelial cells
  • drug induced
  • highly efficient
  • tissue engineering