Login / Signup

Layer-Number Engineered Momentum-Indirect Interlayer Excitons with Large Spectral Tunability.

Wendian YaoDong YangYingying ChenJunchao HuJun-Ze LiDe-Hui Li
Published in: Nano letters (2022)
Interlayer excitons (IXs) in type II van der Waals (vdW) heterostructures are equipped with an oriented permanent dipole moment and long lifetime and thus would allow promising applications in excitonic and optoelectronic devices. However, based on the widely studied heterostructures of transition-metal dichalcogenides (TMDs), IX emission is greatly influenced by the lattice mismatch and geometric misalignment between the constituent layers, increasing the complexity of the device fabrication. Here, we report on the robust momentum-indirect IX emission in TMD/two-dimensional (2D) perovskite vdW heterostructures, which were fabricated without considering the orientation arrangement or momentum mismatch. The IXs show a large diffusion coefficient of ∼10 cm 2 s -1 , and importantly the IX emission energy can be widely tuned from 1.3 to 1.6 eV via changing the layer number of the 2D perovskite or the thickness of TMD flakes, shedding light on the applications of vdW interface engineering to broad-spectrum optoelectronics.
Keyphrases
  • room temperature
  • solar cells
  • transition metal
  • optical coherence tomography
  • solid state
  • ionic liquid
  • high efficiency
  • diffusion weighted imaging
  • computed tomography
  • magnetic resonance imaging
  • tissue engineering