Login / Signup

Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review.

Ahmad ChaddadMichael Jonathan KucharczykAbbas CheddadSharon E ClarkeLama HassanShuxue DingSaima RathoreMingli ZhangYousef KatibBoris BahoricGad AbikhzerStephan ProbstTamim Niazi
Published in: Cancers (2021)
The management of prostate cancer (PCa) is dependent on biomarkers of biological aggression. This includes an invasive biopsy to facilitate a histopathological assessment of the tumor's grade. This review explores the technical processes of applying magnetic resonance imaging based radiomic models to the evaluation of PCa. By exploring how a deep radiomics approach further optimizes the prediction of a PCa's grade group, it will be clear how this integration of artificial intelligence mitigates existing major technological challenges faced by a traditional radiomic model: image acquisition, small data sets, image processing, labeling/segmentation, informative features, predicting molecular features and incorporating predictive models. Other potential impacts of artificial intelligence on the personalized treatment of PCa will also be discussed. The role of deep radiomics analysis-a deep texture analysis, which extracts features from convolutional neural networks layers, will be highlighted. Existing clinical work and upcoming clinical trials will be reviewed, directing investigators to pertinent future directions in the field. For future progress to result in clinical translation, the field will likely require multi-institutional collaboration in producing prospectively populated and expertly labeled imaging libraries.
Keyphrases