Login / Signup

Analytical continuation of two-dimensional wave fields.

Raphaël C AssierAndrey V Shanin
Published in: Proceedings. Mathematical, physical, and engineering sciences (2021)
Wave fields obeying the two-dimensional Helmholtz equation on branched surfaces (Sommerfeld surfaces) are studied. Such surfaces appear naturally as a result of applying the reflection method to diffraction problems with straight scatterers bearing ideal boundary conditions. This is for example the case for the classical canonical problems of diffraction by a half-line or a segment. In the present work, it is shown that such wave fields admit an analytical continuation into the domain of two complex coordinates. The branch sets of such continuation are given and studied in detail. For a generic scattering problem, it is shown that the set of all branches of the multi-valued analytical continuation of the field has a finite basis. Each basis function is expressed explicitly as a Green's integral along so-called double-eight contours. The finite basis property is important in the context of coordinate equations, introduced and used by the authors previously, as illustrated in this article for the particular case of diffraction by a segment.
Keyphrases
  • mental health
  • biofilm formation
  • liquid chromatography
  • crystal structure
  • electron microscopy
  • escherichia coli
  • solid state
  • candida albicans