Genetic and biochemical characterization of OXA-405, an OXA-48-type extended-spectrum β-lactamase without significant carbapenemase activity.
Laurent DortetSaoussen OueslatiKaty JeannotDidier TandéThierry NaasPatrice NordmannPublished in: Antimicrobial agents and chemotherapy (2015)
The epidemiology of carbapenemases worldwide is showing that OXA-48 variants are becoming the predominant carbapenemase type in Enterobacteriaceae in many countries. However, not all OXA-48 variants possess significant activity toward carbapenems (e.g., OXA-163). Two Serratia marcescens isolates with resistance either to carbapenems or to extended-spectrum cephalosporins were successively recovered from the same patient. A genomic comparison using pulsed-field gel electrophoresis and automated Rep-PCR typing identified a 97.8% similarity between the two isolates. Both strains were resistant to penicillins and first-generation cephalosporins. The first isolate was susceptible to expanded-spectrum cephalosporins, was resistant to carbapenems, and had a significant carbapenemase activity (positive Carba NP test) related to the expression of OXA-48. The second isolate was resistant to expanded-spectrum cephalosporins, was susceptible to carbapenems, and did not express a significant imipenemase activity, (negative for the Carba NP test) despite possessing a blaOXA-48-type gene. Sequencing identified a novel OXA-48-type β-lactamase, OXA-405, with a four-amino-acid deletion compared to OXA-48. The blaOXA-405 gene was located on a ca. 46-kb plasmid identical to the prototype IncL/M blaOXA-48-carrying plasmid except for a ca. 16.4-kb deletion in the tra operon, leading to the suppression of self-conjugation properties. Biochemical analysis showed that OXA-405 has clavulanic acid-inhibited activity toward expanded-spectrum activity without significant imipenemase activity. This is the first identification of a successive switch of catalytic activity in OXA-48-like β-lactamases, suggesting their plasticity. Therefore, this report suggests that the first-line screening of carbapenemase producers in Enterobacteriaceae may be based on the biochemical detection of carbapenemase activity in clinical settings.