Virtual histological staining of unlabeled autopsy tissue.
Yuzhu LiNir PillarJingxi LiTairan LiuDi WuSongyu SunGuangdong MaKevin de HaanLuzhe HuangYijie ZhangSepehr HamidiAnatoly UrismanTal Keidar HaranWilliam Dean WallaceJonathan E ZuckermanAydogan OzcanPublished in: Nature communications (2024)
Traditional histochemical staining of post-mortem samples often confronts inferior staining quality due to autolysis caused by delayed fixation of cadaver tissue, and such chemical staining procedures covering large tissue areas demand substantial labor, cost and time. Here, we demonstrate virtual staining of autopsy tissue using a trained neural network to rapidly transform autofluorescence images of label-free autopsy tissue sections into brightfield equivalent images, matching hematoxylin and eosin (H&E) stained versions of the same samples. The trained model can effectively accentuate nuclear, cytoplasmic and extracellular features in new autopsy tissue samples that experienced severe autolysis, such as COVID-19 samples never seen before, where the traditional histochemical staining fails to provide consistent staining quality. This virtual autopsy staining technique provides a rapid and resource-efficient solution to generate artifact-free H&E stains despite severe autolysis and cell death, also reducing labor, cost and infrastructure requirements associated with the standard histochemical staining.