Efficacy of cow and buffalo dung on vermiremediation and phytoremediation of heavy metals via Fourier-transform infrared spectroscopy and comet assay.
Anum NaseerAndleeb Dr SaiqaAbdul BasitShaukat AliMuhammad Siraj Ud-DinNazish Mazhar AliIram LiaqatAisha NazirPublished in: Environmental science and pollution research international (2022)
Heavy metal contamination raised significant concerns throughout the world. The current research aimed to evaluate the impact of organic manure (cow dung and buffalo dung) on vermiremediation and phytoremediation and to remediate heavy metals, i.e., cadmium, lead, and chromium, from artificial contaminated soil via both remediation techniques. The impact of livestock manure was evaluated for the first time which could be effective in in situ as well as ex situ studies. Eisenia fetida, Pheretima lignicola, and Spinacia oleracea were used for the remediation process. Results revealed that E. fetida tolerated lead at 280 mg, cadmium at 150 mg, and chromium at 860 mg compared to P. lignicola. The growth and reproduction of E. fetida were efficient in the cow dung manure compared to buffalo dung. Similarly, seed germination and growth of Spinacia oleracea were better in cow dung media compared to buffalo dung. Bioaccumulation factor showed that E. fetida showed a higher accumulation of heavy metals in their tissues when vermi + phytoremediation was jointly applied (9.50 mg/l of Pb, 24.166 of Cd, and 6.695 of Cr). Fourier-transform infrared spectroscopy indicated that heavy metals had no drastic effects on E. fetida and S. oleracea. Similarly, comet assay revealed that heavy metals had no genotoxic effect on the E. fetida and S. oleracea. It was concluded that both E. fetida and S. oleracea are appropriate for heavy metals remediation in cow dung manure.