Low-frequency Ultrasound with Short Application Time Improves Cellulase Activity and Reducing Sugars Release.
Maria Augusta de Carvalho SilvelloJulian MartínezRosana GoldbeckPublished in: Applied biochemistry and biotechnology (2020)
In this study, we investigated the effect of ultrasound (US) on the activity of commercial cellulase (Celluclast® 1.5 L) in the absence and in the presence of a cellulosic substrate (Avicel®, 2% w.v-1) using a central composite rotatable design. Sonication time (10 to 330 s), US intensity (120.6 to 263.7 W cm-2), and reaction temperature (25 to 50 °C) were varied using a horn-type ultrasound reactor, and endoglucanase (CMCase) and total cellulase (FPase) activities were determined. US intensity had a positive effect on enzyme activity. Under optimal conditions (170 s, 180.8 W cm-2, and 25 °C), CMCase activity was 13% higher than that of the control. In the presence of substrate, CMCase activity increased by 33.87% and KM reduced by 23% in relation to that of the control. The theoretical yield of cellulose was 42.08%. Cellulase activity can be improved by US treatment to maximize productivity gains and reduce costs in second-generation ethanol production, by the action of a low-frequency ultrasound with a short ultrasonication time of application.