Login / Signup

Fluid dynamic induced break-up during volcanic eruptions.

Thomas J JonesC D ReynoldsStephen C Boothroyd
Published in: Nature communications (2019)
Determining whether magma fragments during eruption remains a seminal challenge in volcanology. There is a robust paradigm for fragmentation of high viscosity, silicic magmas, however little is known about the fragmentation behaviour of lower viscosity systems-the most abundant form of volcanism on Earth and on other planetary bodies and satellites. Here we provide a quantitative model, based on experiments, for the non-brittle, fluid dynamic induced fragmentation of low viscosity melts. We define the conditions under which extensional thinning or liquid break-up can be expected. We show that break-up, both in our experiments and natural eruptions, occurs by both viscous and capillary instabilities operating on contrasting timescales. These timescales are used to produce a universal break-up criterion valid for low viscosity melts such as basalt, kimberlite and carbonatite. Lastly, we relate these break-up instabilities to changes in eruptive behaviour, the associated natural hazard and ultimately the deposits formed.
Keyphrases
  • high glucose
  • diabetic rats
  • drug induced
  • endothelial cells
  • oxidative stress
  • ionic liquid
  • mass spectrometry