Login / Signup

Possible Violation of the Spin-Hamiltonian Concept in Interpreting the Zero-Field Splitting.

Roman BočaCyril RajnákJán Titiš
Published in: The journal of physical chemistry. A (2023)
The majority of experimental data in electron spin resonance and molecular magnetism are interpreted in terms of the spin-Hamiltonian (SH) formalism. However, this is an approximate theory that requires a proper testing. In the older variant, the multielectron terms are used as a basis in which the D -tensor components are evaluated by employing the second-order perturbation theory (PT) for nondegenerate states; here, the spin-orbit interaction expressed via the spin-orbit splitting parameter λ serves for the perturbation. The model space is restricted only to the fictitious spin functions | S , M ⟩. In the case of the orbital (quasi) degeneracy of the ground term, the PT tends to diverge and the subtracted D , E , and g parameters are false. In the second variant working in the "complete active space" (CAS), the spin-orbit coupling operator is involved by the variation method resulting in the spin-orbit multiplets (energies and eigenvectors) The multiplets can be evaluated either by applying ab initio CASSCF + NEVPT2 + SOC calculations or by using semiempirical generalized crystal-field theory (with the one-electron SOC operator depending upon ξ). The resulting states can be projected onto the subspace of the spin-only kets in the way that the eigenvalues stay invariant. Such an effective Hamiltonian matrix can be reconstructed using six independent components of the symmetric D -tensor from which the D and E values are obtained by solving linear equations. The eigenvectors of the spin-orbit multiplets in the CAS allow determining the dominating composition of the spin projection─cumulative weights of |± M ⟩. These are conceptually different from those generated by the SH alone. It is shown that in some cases, the SH theory works satisfactorily for a series of transition-metal complexes; however, sometimes it fails. The ab initio calculations on the SH parameters are compared with the approximate generalized crystal-field theory conducted at the experimental geometry of the chromophore. In total, 12 metal complexes have been analyzed. One of the criteria that assesses the validity of SH is the projection norm N for spin multiplets (this has not to be far from 1). Another criterion is the gap in the spectrum of the spin-orbit multiplets that separates the hypothetical (fictitious) spin-only manifold from the rest of the states.
Keyphrases