Login / Signup

Thermal-Induced Dielectric Switching with 40K Wide Hysteresis Loop Near Room Temperature.

Yang-Hui LuoChen ChenDan-Li HongXiao-Tong HeJing-Wen WangBai-Wang Sun
Published in: The journal of physical chemistry letters (2018)
A thermal-induced dielectric switching has been realized in two ion-pair crystal [C2H6N5]+·[H2PO4]- (1, C2H6N5 = 3,5-diamino-1,2,4-triazolinium) through single-crystal-to-single-crystal phase transition (SCSC-PT). Upon cooling from room temperature, the 1D cation stripes that are composed of [C2H5N5]+ cations have undergone a 90° sharp rotation around the c axis, accompanied by the transition of crystal stacking from loose unparallel (dynamic state) to compression parallel (static state) and reorientation of dipoles on the [C2H5N5]+ cation, which thus resulted in high dielectric state to low dielectric state transformation. While on the warming run, the reverse process was rather sluggish, resulting in a reversible dielectric switching with ultralarge (about 40K wide) hysteresis loop near room temperature. It is thought that the large-sized polar cation stripes have a predominant influence on the switching properties of 1.
Keyphrases
  • room temperature
  • ionic liquid
  • high glucose
  • diabetic rats
  • transcription factor
  • drug induced