Login / Signup

Probe the Dynamic Adsorption and Phase Transition of Underpotential Deposition Processes at Electrode-Electrolyte Interfaces.

Kuo-Hao ChenFatemeh FathiTristan MaxsonMezbah HossainEmil F KhisamutdinovTibor SzilvásiXiangqun ZengZhihai Li
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
Electrochemical scanning tunneling microscopy (EC-STM) and electrochemical quartz crystal microbalance (E-QCM) techniques in combination with DFT calculations have been applied to reveal the static phase and the phase transition of copper underpotential deposition (UPD) on a gold electrode surface. EC-STM demonstrated, for the first time, the direct visualization of the disintegration of (√3 × √3)R30° copper UPD adlayer with coadsorbed SO 4 2- while changing sample potential ( E S ) toward the redox Pa2/Pc2 peaks, which are associated with the phase transition between the Cu UPD (√3 × √3)R30° phase II and disordered randomly adsorbed phase III. DFT calculations show that SO 4 2- binds via three oxygens to the bridge sites of the copper with sulfate being located directly above the copper vacancy in the (√3 × √3)R30° adlayer, whereas the remaining oxygen of the sulfate points away from the surface. E-QCM measurement of the change of the electric charge due to Cu UPD Faradaic processes, the change of the interfacial mass due to the adsorption and desorption of Cu(II) and SO 4 2- , and the formation and stripping of UPD copper on the gold surface provide complementary information that validates the EC-STM and DFT results. This work demonstrated the advantage of using complementary in situ experimental techniques (E-QCM and EC-STM) combined with simulations to obtain an accurate and complete picture of the dynamic interfacial adsorption and UPD processes at the electrode/electrolyte interface.
Keyphrases