Operational State Recognition of a DC Motor Using Edge Artificial Intelligence.
Konstantinos StrantzalisFotios GioulekasPanagiotis KatsarosAndreas L SymeonidisPublished in: Sensors (Basel, Switzerland) (2022)
Edge artificial intelligence (EDGE-AI) refers to the execution of artificial intelligence algorithms on hardware devices while processing sensor data/signals in order to extract information and identify patterns, without utilizing the cloud. In the field of predictive maintenance for industrial applications, EDGE-AI systems can provide operational state recognition for machines and production chains, almost in real time. This work presents two methodological approaches for the detection of the operational states of a DC motor, based on sound data. Initially, features were extracted using an audio dataset. Two different Convolutional Neural Network (CNN) models were trained for the particular classification problem. These two models are subject to post-training quantization and an appropriate conversion/compression in order to be deployed to microcontroller units (MCUs) through utilizing appropriate software tools. A real-time validation experiment was conducted, including the simulation of a custom stress test environment, to check the deployed models' performance on the recognition of the engine's operational states and the response time for the transition between the engine's states. Finally, the two implementations were compared in terms of classification accuracy, latency, and resource utilization, leading to promising results.
Keyphrases
- artificial intelligence
- deep learning
- convolutional neural network
- big data
- machine learning
- electronic health record
- dendritic cells
- data analysis
- heavy metals
- virtual reality
- resistance training
- wastewater treatment
- health information
- risk assessment
- stress induced
- heat stress
- loop mediated isothermal amplification
- body composition
- quantum dots
- finite element
- real time pcr