Login / Signup

Nonlocality, Superposition, and Time in the 4+1 Formalism.

Filip Strubbe
Published in: Entropy (Basel, Switzerland) (2023)
The field of quantum gravity struggles with several problems related to time, quantum measurement, nonlocality, and realism. To address these issues, this study develops a 4+1 formalism featuring a flat 4D spacetime evolving with a second form of time, τ, worldlines that locally conserve momentum, and a hypersurface representing the present. As a function of τ, worldlines can spatially readjust and influences can travel backward or forward in the time dimension along these worldlines, offering a physical mechanism for retrocausality. Three theoretical models are presented, elucidating how nonlocality in an EPR experiment, the arrival time problem, and superposition in a Mach-Zehnder interferometer can be understood within this 4+1 framework. These results demonstrate that essential quantum phenomena can be reproduced in the 4+1 formalism while upholding the principles of realism, locality, and determinism at a fundamental level. Additionally, there is no measurement or collapse problem, and a natural explanation for the quantum-to-classical transition is obtained. Furthermore, observations of a 4D block universe and of the flow of time can be simultaneously understood. With these properties, the presented 4+1 formalism lays an interesting foundation for a quantum gravity theory based on intuitive principles and compatible with our observation of time.
Keyphrases
  • molecular dynamics
  • energy transfer
  • mental health
  • monte carlo
  • physical activity
  • drug induced