Login / Signup

Histogram analysis of quantitative T1 and MT maps from ultrahigh field MRI in clinically isolated syndrome and relapsing-remitting multiple sclerosis.

Ali Al-RadaidehOlivier E MouginSu-Yin LimI-Jun ChouCris S ConstantinescuPenny Gowland
Published in: NMR in biomedicine (2015)
This study used quantitative MRI to study normal appearing white matter (NAWM) in patients with clinically isolated syndromes suggestive of multiple sclerosis and relapsing-remitting multiple sclerosis (RRMS). This was done at ultrahigh field (7 T) for greater spatial resolution and sensitivity. 17 CIS patients, 11 RRMS patients, and 20 age-matched healthy controls were recruited. They were scanned using a 3D inversion recovery turbo field echo sequence to measure the longitudinal relaxation time (T1). A 3D magnetization transfer prepared turbo field echo (MT-TFE) sequence was also acquired, first without a presaturation pulse and then with the MT presaturation pulse applied at -1.05 kHz and +1.05 kHz off resonance from water to produce two magnetization transfer ratio maps (MTR(-) and MTR(+)). Histogram analysis was performed on the signal from the voxels in the NAWM mask. The upper quartile cut-off of the T1 histogram was significantly higher in RRMS patients than in controls (p < 0.05), but there was no difference in CIS. In contrast, MTR was significantly different between CIS or RRMS patients and controls (p < 0.05) for most histogram measures considered. The difference between MTR(+) and MTR(-) signals showed that NOE contributions dominated the changes found. There was a weak negative correlation (r = -0.46, p < 0.05) between the mode of T1 distributions and healthy controls' age; this was not significant for MTR(+) (r = -0.34, p > 0.05) or MTR(-) (r = 0.13, p > 0.05). There was no significant correlation between the median of T1, MTR(-), or MTR(+) and the age of healthy controls. Furthermore, no significant correlation was observed between EDSS or disease duration and T1, MTR(-), or MTR(+) for either CIS or RRMS patients. In conclusion, MTR was found to be more sensitive to early changes in MS disease than T1.
Keyphrases