Hydrogen-Bonded Water-Aminium Assemblies for Synthesis of Zeotypes with Ordered Heteroatoms.
Sung Hwan ParkSambhu RadhakrishnanWanuk ChoiC Vinod ChandranKingsley Christian KempEric BreynaertRobert G BellChristine E A KirschhockSuk Bong HongPublished in: Journal of the American Chemical Society (2022)
Water plays a central role in the crystallization of a variety of organic, inorganic, biological, and hybrid materials. This is also true for zeolites and zeolite-like materials, an important class of industrial catalysts and adsorbents. Water is always present during their hydrothermal synthesis, either with or without organic species as structure-directing agents. Apart from its role as a solvent or a catalyst, structure direction by water in zeolite synthesis has never been clearly elucidated. Here, we report the crystallization of phosphate-based molecular sieves using rationally designed, hydrogen-bonded water-aminium assemblies, resulting in molecular sieves exhibiting the crystallographic ordering of heteroatoms. We demonstrate that a 1:1 assembly of water and diprotonated N , N -dimethyl-1,2-ethanediamine acts as a structure-directing agent in the synthesis of a silicoaluminophosphate material with phillipsite (PHI) topology, using SMARTER crystallography, which combines single-crystal X-ray diffraction and nuclear magnetic resonance spectroscopy, as well as ab initio molecular dynamics simulations. The molecular arrangement of the hydrogen-bonded assembly matches well with the shape and size of subunits in the PHI structure, and their charge distributions result in the strict ordering of framework tetrahedral atoms. This concept of structure direction by water-containing supramolecular assemblies should be applicable to the synthesis of many classes of porous materials.