Probing the Effects of Ligand Field and Coordination Geometry on Magnetic Anisotropy of Pentacoordinate Cobalt(II) Single-Ion Magnets.
Amit Kumar MondalTamal GoswamiAnirban MisraSanjit KonarPublished in: Inorganic chemistry (2017)
In this work, the effects of ligand field strength as well as the metal coordination geometry on magnetic anisotropy of pentacoordinated CoII complexes have been investigated using a combined experimental and theoretical approach. For that, a strategic design and synthesis of three pentacoordinate CoII complexes [Co(bbp)Cl2]·(MeOH) (1), [Co(bbp)Br2]·(MeOH) (2), and [Co(bbp)(NCS)2] (3) has been achieved by using the tridentate coordination environment of the ligand in conjunction with the accommodating terminal ligands (i.e., chloride, bromide, and thiocyanate). Detailed magnetic studies disclose the occurrence of slow magnetic relaxation behavior of CoII centers with an easy-plane magnetic anisotropy. A quantitative estimation of ZFS parameters has been successfully performed by density functional theory (DFT) calculations. Both the sign and magnitude of ZFS parameters are prophesied well by this DFT method. The theoretical results also reveal that the α → β (SOMO-SOMO) excitation contributes almost entirely to the total ZFS values for all complexes. It is worth noting that the excitation pertaining to the most positive contribution to the ZFS parameter is the dxy → dx2-y2 excitation for complexes 1 and 2, whereas for complex 3 it is the dz2 → dx2-y2 excitation.