Login / Signup

In vivo and in vitro efficient textile wastewater remediation by Aspergillus niger biosorbent.

Shuhui LiJianying HuangJiajun MaoLiyuan ZhangChenglin HeGuoqiang ChenIvan P ParkinYuekun Lai
Published in: Nanoscale advances (2018)
In this work, the treatment of textile wastewater by a facile and high-efficiency technology using eco-friendly Aspergillus niger as a biosorbent was investigated. We measured physical changes (weight, size) during the formation and growth of fungus pellets and the pH values that influence the adsorption performance and biosorption mechanism. Three acid anionic dyes containing Acid Orange 56, Acid Blue 40 and Methyl Blue were chosen as model dyes to investigate batch adsorption efficiency. Two adsorption models ( in vivo and in vitro ) were adopted to decolorize the acid dyes. The results show that fungus pellets have excellent decoloration abilities with a high adsorption efficiency of 98% for 200 mg L -1 of acid dye. The pH value of the dye solution varied with the adsorption time and the dye removal efficiency greatly depended on the pH. The bioadsorption mechanism of nano-scale hyphae was revealed to be mainly due to electrostatic interactions caused by the pH change. Furthermore, the surface morphologies of the fungus after adsorption indicated that the dyes had been adsorbed on the surface of the fungus mycelia. Moreover, prepared 3D fungus/GO aerogels demonstrated superior dye removal abilities compared with fungus aerogels.
Keyphrases
  • aqueous solution
  • wastewater treatment
  • high efficiency
  • physical activity
  • body mass index
  • high resolution
  • single cell
  • body weight