Login / Signup

Comparison of functional activation responses from the auditory cortex derived using multi-distance frequency domain and continuous wave near-infrared spectroscopy.

Penaz Parveen Sultana MohammadSittiprapa IsaranguraAnn Clock EddinsAshwin B Parthasarathy
Published in: Neurophotonics (2021)
Significance: Quantitative measurements of cerebral hemodynamic changes due to functional activation are widely accomplished with commercial continuous wave (CW-NIRS) instruments despite the availability of the more rigorous multi-distance frequency domain (FD-NIRS) approach. A direct comparison of the two approaches to functional near-infrared spectroscopy can help in the interpretation of optical data and guide implementations of diffuse optical instruments for measuring functional activation. Aim: We explore the differences between CW-NIRS and multi-distance FD-NIRS by comparing measurements of functional activation in the human auditory cortex. Approach: Functional activation of the human auditory cortex was measured using a commercial frequency domain near-infrared spectroscopy instrument for 70 dB sound pressure level broadband noise and pure tone (1000 Hz) stimuli. Changes in tissue oxygenation were calculated using the modified Beer-Lambert law (CW-NIRS approach) and the photon diffusion equation (FD-NIRS approach). Results: Changes in oxygenated hemoglobin measured with the multi-distance FD-NIRS approach were about twice as large as those measured with the CW-NIRS approach. A finite-element simulation of the functional activation problem was performed to demonstrate that tissue oxygenation changes measured with the CW-NIRS approach is more accurate than that with multi-distance FD-NIRS. Conclusions: Multi-distance FD-NIRS approaches tend to overestimate functional activation effects, in part due to partial volume effects.
Keyphrases
  • working memory
  • air pollution
  • subarachnoid hemorrhage
  • machine learning
  • brain injury
  • big data
  • deep learning
  • cerebral ischemia
  • red blood cell