Login / Signup

Facile Synthesis, Geometry, and 2'-Substituent-Dependent in Vivo Activity of 5'-(E)- and 5'-(Z)-Vinylphosphonate-Modified siRNA Conjugates.

Rubina Giare ParmarChristopher R BrownShigeo MatsudaJennifer L S WilloughbyChristopher S TheileKlaus CharisséDonald J FosterIvan ZlatevVasant JadhavMartin A MaierMartin EgliMuthiah ManoharanKallanthottathil G Rajeev
Published in: Journal of medicinal chemistry (2018)
(E)-Vinylphosphonate ((E)-VP), a metabolically stable phosphate mimic at the 5'-end of the antisense strand, enhances the in vivo potency of siRNA. Here we describe a straightforward synthetic approach to incorporate a nucleotide carrying a vinylphosphonate (VP) moiety at the 5'-end of oligonucleotides under standard solid-phase synthesis and deprotection conditions by utilizing pivaloyloxymethyl (POM) protected VP-nucleoside phosphoramidites. The POM protection enhances scope and scalability of 5'-VP-modified oligonucleotides and, in a broader sense, the synthesis of oligonucleotides modified with phosphonate moieties. Trivalent N-acetylgalactosamine-conjugated small interfering RNA (GalNAc-siRNA) comprising (E)-geometrical isomer of VP showed improved RISC loading with robust RNAi-mediated gene silencing in mice compared to the corresponding (Z)-isomer despite similar tissue accumulation. We also obtained structural insights into why bulkier 2'-ribosugar substitutions such as 2'-O-[2-(methylamino)-2-oxoethyl] are well tolerated only when combined with 5'-(E)-VP.
Keyphrases
  • disease virus
  • cancer therapy
  • nucleic acid
  • drug delivery
  • hyaluronic acid
  • metabolic syndrome