Login / Signup

A critical review on robust self-cleaning properties of lotus leaf.

Lei Wang
Published in: Soft matter (2023)
The robust self-cleaning of a lotus leaf is the most classic and powerful phenomenon in nature, whose hybrid papillae and biological wax guarantee its functions. The stability of the lotus leaf surface function is determined by its overall structural design, and is also the fundamental reason for its long-term survival in the natural environment. In fact, the durability of lotus leaf surface function is facilitated by the coordination of many factors which is why it is challenging to be investigated using bionic technology. In this review, we comprehensively examined the synergistic effects of flexible characteristics, surface topography, hollow interlayers, leaf shape, and bent petioles on the structural stability of the lotus leaf surface. The key significance of these factors is in transferring the stress and strain on the surface downwards, reducing the load on the surface, improving the durability of the self-cleaning function, and ultimately ensuring respiration and photosynthesis of leaves in the natural environment. This comprehensive scrutiny offers a novel classical bionic scheme for enhancing the structural stability of a surface, which has potential for applications in deepwater self-cleaning, anti-drag, anti-icing, thermal insulation, and mechanical enhancement of membranes and buildings.
Keyphrases
  • mass spectrometry
  • climate change
  • cancer therapy
  • stress induced