Login / Signup

A study on preparation of modified Graphene Oxide and flame retardancy of polystyrene composite microspheres.

Yazhen WangYingbo QingYu SunMeng ZhuShaobo Dong
Published in: Designed monomers and polymers (2020)
In this paper, the ODOPM, a kind of 9, 10-dihydro-9-oxygen-heterooxy-10-phosphoro-10-oxygen (DOPO) derivative, was obtained by hydroxylation of DOPO. Further, a phosphorus nano-flame retardant (GO-ODOPM) was obtained by addition reaction with carboxylated Graphite Oxide (GO-COOH). And then Graphene Oxide/polystyrene (GO-ODOPM/PS) composite microspheres were obtained via suspension polymerization of styrene with GO-ODOPM. The decrease of the peak heat release rate (HRR) and total heat release rate (THR) for the GO-ODOPM/PS composite microspheres was obtained when the content of the additives was only 3.0 wt% is more than 36.2% and 33.6% compared with the pure PS microspheres, respectively. Thermogravimetric (TG), dynamic rheology and carbon residue analysis were used to study the flame-retardant mechanism of GO-ODOPM in PS microspheres. The results revealed that the addition of GO-ODOPM obviously reduced the fire hazard of polystyrene (PS) microspheres. Thus, this work provided a feasible method to design efficient flame retardants for enhancing fire safety of polymers.
Keyphrases
  • molecularly imprinted
  • heat stress
  • solid phase extraction
  • high resolution