DeXtrusion: Automatic recognition of epithelial cell extrusion through machine learning in vivo.
Alexis VillarsGaelle LetortLéo ValonRomain LevayerPublished in: Development (Cambridge, England) (2023)
Accurately counting and localising cellular events from movies is an important bottleneck of high content tissue/embryo live imaging. Here, we propose a new methodology based on deep learning allowing automatic detection of cellular events and their precise x-y-t localisation on live fluorescent imaging movies without segmentation. We focused on the detection of cell extrusion, the expulsion of dying cells from the epithelial layer, and devised DeXtrusion: a pipeline based on recurrent neural networks for automatic detection of cell extrusion/cell death events in large movies of epithelia marked with cell contour. The pipeline, initially trained on movies of the Drosophila pupal notum marked with fluorescent E-cadherin, is easily trainable, provides fast and accurate extrusion predictions in a large range of imaging conditions, and can also detect other cellular events such as cell division or cell differentiation. It also performs well on other epithelial tissues with reasonable retraining. Our methodology could easily be applied for other cellular events detected in live fluorescent microscopy and help to democratise the use of deep learning for automatic event detections in developing tissues.
Keyphrases
- deep learning
- machine learning
- high resolution
- single cell
- label free
- neural network
- cell death
- artificial intelligence
- cell therapy
- convolutional neural network
- quantum dots
- gene expression
- bone marrow
- stem cells
- loop mediated isothermal amplification
- cell proliferation
- signaling pathway
- big data
- pi k akt
- sensitive detection
- fluorescence imaging
- resistance training