Fracture Resistance Analysis of 3D-Printed Polymers.
Ali ZolfagharianMohammad Reza KhosravaniAkif KaynakPublished in: Polymers (2020)
Three-dimensional (3D)-printed parts are an essential subcategory of additive manufacturing with the recent proliferation of research in this area. However, 3D-printed parts fabricated by different techniques differ in terms of microstructure and material properties. Catastrophic failures often occur due to unstable crack propagations and therefore a study of fracture behavior of 3D-printed components is a vital component of engineering design. In this paper, experimental tests and numerical studies of fracture modes are presented. A series of experiments were performed on 3D-printed nylon samples made by fused deposition modeling (FDM) and multi-jet fusion (MJF) to determine the load-carrying capacity of U-notched plates fabricated by two different 3D printing techniques. The equivalent material concept (EMC) was used in conjunction with the J-integral failure criterion to investigate the failure of the notched samples. Numerical simulations indicated that when EMC was combined with the J-integral criterion the experimental results could be predicted successfully for the 3D-printed polymer samples.