Login / Signup

Three-Dimensional Modeling of Quasicrystal Structures from X-ray Diffraction: An Icosahedral Al-Cu-Fe Alloy.

Seung-Tae Hong
Published in: Inorganic chemistry (2017)
Quasicrystals (QCs) are well-ordered but aperiodic crystals with classically forbidden symmetries (such as 5-fold). High-dimensional (HD) crystallography is a standard method to locate atom positions explicitly. However, in practice, it is still challenging because of its complexity. Here, we report a new simple approach to three-dimensional (3D) atomic modeling derived from X-ray diffraction data, and apply it to the icosahedral QC Al0.63Cu0.25Fe0.12. Electron density maps were calculated directly from 3D diffraction data indexed with noninteger (fractional) numbers as measured, with proper phases; each of 25 = 32 possible phase assignments for the five strongest reflections was used for Fourier synthesis. This resulted in an initial phasing model based on chemically sensible electron density maps. The following procedure was exactly the same as that used to determine ordinary crystal structures, except that fractional indices were assigned to the reciprocal vectors relative to the three orthogonal 2-fold axes in icosahedral (Ih) symmetry to which the observed diffraction data conformed. Finally, ∼30 000 atoms were located within a sphere of a ∼48 Å radius. Structural motifs or basic repeating units with a hierarchical nature can be found. Isolated icosahedral clusters are surrounded by a concentric dodecahedron, beyond which there is a concentric truncated icosahedron. These are strikingly similar to those obtained via HD crystallography, but show very clear real-space relationships between the clusters.
Keyphrases
  • electron microscopy
  • electronic health record
  • high resolution
  • big data
  • crystal structure
  • healthcare
  • aqueous solution
  • metal organic framework
  • minimally invasive
  • data analysis
  • mass spectrometry
  • room temperature