Prevalence, Diversity and UV-Light Inducibility Potential of Prophages in Bacillus subtilis and Their Possible Roles in Host Properties.
Haftom Baraki AbrahaYoubin ChoiWoobin HyunJae-Won LeeHai Seong KangMin Seo SoYoung-Sup LeeJong-Hyun JungDesta Berhe SbhatuKwang-Pyo KimPublished in: Viruses (2022)
Bacillus subtilis is an important bacterial species due to its various industrial, medicinal, and agricultural applications. Prophages are known to play vital roles in host properties. Nevertheless, studies on the prophages and temperate phages of B. subtilis are relatively limited. In the present study, an in silico analysis was carried out in sequenced B. subtilis strains to investigate their prevalence, diversity, insertion sites, and potential roles. In addition, the potential for UV induction and prevalence was investigated. The in silico prophage analysis of 164 genomes of B. subtilis strains revealed that 75.00% of them contained intact prophages that exist as integrated and/or plasmid forms. Comparative genomics revealed the rich diversity of the prophages distributed in 13 main clusters and four distinct singletons. The analysis of the putative prophage proteins indicated the involvement of prophages in encoding the proteins linked to the immunity, bacteriocin production, sporulation, arsenate, and arsenite resistance of the host, enhancing its adaptability to diverse environments. An induction study in 91 B. subtilis collections demonstrated that UV-light treatment was instrumental in producing infective phages in 18.68% of them, showing a wide range of host specificity. The high prevalence and inducibility potential of the prophages observed in this study implies that prophages may play vital roles in the B. subtilis host.