Login / Signup

A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process.

Gabriele BaronioSami HarranAlberto Signoroni
Published in: Applied bionics and biomechanics (2016)
The possibility to realize highly customized orthoses is receiving boost thanks to the widespread diffusion of low-cost 3D printing technologies. However, rapid prototyping (RP) with 3D printers is only the final stage of patient personalized orthotics processes. A reverse engineering (RE) process is in fact essential before RP, to digitize the 3D anatomy of interest and to process the obtained surface with suitable modeling software, in order to produce the virtual solid model of the orthosis to be printed. In this paper, we focus on the specific and demanding case of the customized production of hand orthosis. We design and test the essential steps of the entire production process with particular emphasis on the accurate acquisition of the forearm geometry and on the subsequent production of a printable model of the orthosis. The choice of the various hardware and software tools (3D scanner, modeling software, and FDM printer) is aimed at the mitigation of the design and production costs while guaranteeing suitable levels of data accuracy, process efficiency, and design versatility. Eventually, the proposed method is critically analyzed so that the residual issues and critical aspects are highlighted in order to discuss possible alternative approaches and to derive insightful observations that could guide future research activities.
Keyphrases
  • low cost
  • data analysis
  • magnetic resonance imaging
  • computed tomography
  • case report
  • big data
  • contrast enhanced