Drug-Drug Interactions of Artemisinin-Based Combination Therapies in Malaria Treatment: A Narrative Review of the Literature.
Joyce Hernandez MaldonadoOliver GrundmannPublished in: Journal of clinical pharmacology (2022)
Artemisinin is an antimalarial compound derived from the plant Artemisia annua L., also known as sweet wormwood. According to the World Health Organization, artemisinin-based combination therapy (ACT) is an essential treatment for malaria, specifically Plasmodium falciparum, which accounts for most malaria-related mortality. ACTs used to treat uncomplicated malaria include artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, artesunate-sulphadoxine-pyrimethamine, and dihydroartemisinin-piperaquine. Although the mechanism of action and clinical capabilities of artemisinin in malaria treatment are widely known, more information on the potential for drug interactions needs to be further investigated. Some studies show pharmacokinetic and pharmacodynamic drug interactions with HIV antiviral treatment but few studies have been conducted on most other drug classes. Based on known genotypes of cytochrome P450 (CYP) enzymes, CYP2B6 and CYP3A are primarily involved in the metabolism of artemisinin and its derivatives. Reduced functions in these enzymes can lead to subtherapeutic concentrations of the active metabolite, dihydroartemisinin, that may cause treatment failure, which has been shown in some studies with cardiovascular, antibiotic, and antiparasitic drugs. Although the clinical importance remains unclear to date, clinicians should be aware of potential drug-drug interactions and monitor patients on ACT closely.