In Situ Doping of the PEDOT Top Electrode for All-Solution-Processed Semitransparent Organic Solar Cells.
Taeyoon KiChelim JangJong Sung JinJehan KimNara KimHeehun MoonSoo-Young JangSooncheol KwonJubin JangHongkyu KangKwanghee LeePublished in: ACS applied materials & interfaces (2023)
The development of an ideal solution-processable transparent electrode has been a challenge in the field of all-solution-processed semitransparent organic solar cells (ST-OSCs). We present a novel poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) top electrode for all-solution-processed ST-OSCs through in situ doping of PEDOT:PSS. A strongly polarized long perfluoroalkyl ( n = 8) chain-anchored sulfonic acid effectively eliminates insulating PSS and spontaneously crystallizes PEDOT at room temperature, leading to outstanding electrical properties and transparency of PEDOT top electrodes. Doped PEDOT-based ST-OSCs yield a high power conversion efficiency of 10.9% while providing an average visible transmittance of 26.0% in the visible range. Moreover, the strong infrared reflectivity of PEDOT enables ST-OSCs to reject 62.6% of the heat emitted by sunlight (76.7% from infrared radiation), outperforming the thermal insulation capability of commercial tint films. This light management approach using PEDOT enables ST-OSCs to simultaneously provide energy generation and energy savings, making it the first discovery toward sustainable energy in buildings.