Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration.
Chloe L StantonChristopher T ReinhardJames F KastingNathaniel E OstromJoshua A HaslunTimothy W LyonsJennifer B GlassPublished in: Geobiology (2018)
The potent greenhouse gas nitrous oxide (N2 O) may have been an important constituent of Earth's atmosphere during Proterozoic (~2.5-0.5 Ga). Here, we tested the hypothesis that chemodenitrification, the rapid reduction of nitric oxide by ferrous iron, would have enhanced the flux of N2 O from ferruginous Proterozoic seas. We empirically derived a rate law, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mfrac><mml:mrow><mml:mi>d</mml:mi> <mml:mfenced><mml:msub><mml:mi>N</mml:mi> <mml:mn>2</mml:mn></mml:msub> <mml:mi>O</mml:mi></mml:mfenced> </mml:mrow> <mml:mrow><mml:mi>d</mml:mi> <mml:mi>t</mml:mi></mml:mrow> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mn>7.2</mml:mn> <mml:mo>×</mml:mo> <mml:msup><mml:mn>10</mml:mn> <mml:mrow><mml:mo>-</mml:mo> <mml:mn>5</mml:mn></mml:mrow> </mml:msup> <mml:msup><mml:mrow><mml:mo>[</mml:mo> <mml:msup><mml:mtext>Fe</mml:mtext> <mml:mrow><mml:mn>2</mml:mn> <mml:mo>+</mml:mo></mml:mrow> </mml:msup> <mml:mo>]</mml:mo></mml:mrow> <mml:mrow><mml:mn>0.3</mml:mn></mml:mrow> </mml:msup> <mml:msup><mml:mrow><mml:mo>[</mml:mo> <mml:mtext>NO</mml:mtext> <mml:mo>]</mml:mo></mml:mrow> <mml:mn>1</mml:mn></mml:msup> </mml:mrow> </mml:math> , and measured an isotopic site preference of +16‰ for the reaction. Using this empirical rate law, and integrating across an oceanwide oxycline, we found that low nM NO and μM-low mM Fe2+ concentrations could have sustained a sea-air flux of 100-200 Tg N2 O-N year-1 , if N2 fixation rates were near-modern and all fixed N2 was emitted as N2 O. A 1D photochemical model was used to obtain steady-state atmospheric N2 O concentrations as a function of sea-air N2 O flux across the wide range of possible pO2 values (0.001-1 PAL). At 100-200 Tg N2 O-N year-1 and >0.1 PAL O2 , this model yielded low-ppmv N2 O, which would produce several degrees of greenhouse warming at 1.6 ppmv CH4 and 320 ppmv CO2 . These results suggest that enhanced N2 O production in ferruginous seawater via a previously unconsidered chemodenitrification pathway may have helped to fill a Proterozoic "greenhouse gap," reconciling an ice-free Mesoproterozoic Earth with a less luminous early Sun. A particularly notable result was that high N2 O fluxes at intermediate O2 concentrations (0.01-0.1 PAL) would have enhanced ozone screening of solar UV radiation. Due to rapid photolysis in the absence of an ozone shield, N2 O is unlikely to have been an important greenhouse gas if Mesoproterozoic O2 was 0.001 PAL. At low O2 , N2 O might have played a more important role as life's primary terminal electron acceptor during the transition from an anoxic to oxic surface Earth, and correspondingly, from anaerobic to aerobic metabolisms.