Login / Signup

Molecular phylogenetic analysis and seasonal dynamics of Eimeria species infecting broilers of Kashmir, India.

Pooja BhartiAbid Hussain BhatFayaz Hussain MirShabir Ahmad RatherSyed TanveerZahoor Ahmad Wani
Published in: Parasitology research (2024)
Globally, the poultry industry is seriously threatened by coccidiosis caused by various species of Eimeria. This protozoan parasite inhabits the epithelial lining of the gastrointestinal tract of poultry globally and can cause serious clinical disease. The present study was carried out on poultry farms located in various regions of Kashmir, India, to investigate the prevalence and phylogenetic relationships of Eimeria species affecting broiler chickens. Over a period of one year, fecal samples were collected from 60 poultry farms in Kashmir and morphological and molecular techniques were employed for Eimeria species identification. Results revealed a high prevalence of coccidiosis, with 58.3% (35/60) of farms positive for Eimeria. The most prevalent species were E. tenella (31/35, 88.6%) followed by E. acervulina (25/35, 71.4%), E. maxima (19/35, 54.3%), E. mitis (18/35, 51.4%), and E. necatrix (9/35, 25.7%). Seasonal variation in prevalence was also observed, with the highest rates in autumn (86.7%) and summer (66.7%). Additionally, younger birds (3-4 weeks) exhibited higher infection rates (85.7%) compared to older birds (57.9%) (5-6 weeks). Mixed infection was found in 94.2% (33/35) of positive farms. Phylogenetic analysis using ITS1 sequences confirmed species clustering and revealed evolutionary relationships among Eimeria species. E. tenella and E. necatrix formed a distinct clade, while E. acervulina formed another. The study underscores the importance of molecular techniques in accurate species identification and provides valuable insights into the epidemiology of coccidiosis in poultry in Kashmir. Effective control strategies, including vaccination and improved management practices, are necessary to mitigate the economic losses associated with this widespread poultry disease.
Keyphrases
  • genetic diversity
  • healthcare
  • antimicrobial resistance
  • primary care
  • single cell
  • high resolution
  • physical activity
  • dna methylation
  • heat stress
  • rna seq