Auxiliary Diagnosis of Dental Calculus Based on Deep Learning and Image Enhancement by Bitewing Radiographs.
Tai-Jung LinYen-Ting LinYuan-Jin LinAi-Yun TsengChien-Yu LinLi-Ting LoTsung-Yi ChenShih-Lun ChenChiung-An ChenKuo-Chen LiPatricia Angela R AbuPublished in: Bioengineering (Basel, Switzerland) (2024)
In the field of dentistry, the presence of dental calculus is a commonly encountered issue. If not addressed promptly, it has the potential to lead to gum inflammation and eventual tooth loss. Bitewing (BW) images play a crucial role by providing a comprehensive visual representation of the tooth structure, allowing dentists to examine hard-to-reach areas with precision during clinical assessments. This visual aid significantly aids in the early detection of calculus, facilitating timely interventions and improving overall outcomes for patients. This study introduces a system designed for the detection of dental calculus in BW images, leveraging the power of YOLOv8 to identify individual teeth accurately. This system boasts an impressive precision rate of 97.48%, a recall (sensitivity) of 96.81%, and a specificity rate of 98.25%. Furthermore, this study introduces a novel approach to enhancing interdental edges through an advanced image-enhancement algorithm. This algorithm combines the use of a median filter and bilateral filter to refine the accuracy of convolutional neural networks in classifying dental calculus. Before image enhancement, the accuracy achieved using GoogLeNet stands at 75.00%, which significantly improves to 96.11% post-enhancement. These results hold the potential for streamlining dental consultations, enhancing the overall efficiency of dental services.
Keyphrases
- deep learning
- convolutional neural network
- oral health
- artificial intelligence
- machine learning
- end stage renal disease
- chronic kidney disease
- oxidative stress
- newly diagnosed
- climate change
- primary care
- ejection fraction
- metabolic syndrome
- optical coherence tomography
- risk assessment
- sensitive detection
- real time pcr