Login / Signup

Fast Generation of Machine Learning-Based Force Fields for Adsorption Energies.

Saientan BagManuel KonradTobias SchlöderPascal FriederichWolfgang Wenzel
Published in: Journal of chemical theory and computation (2021)
Adsorption and desorption of molecules are key processes in extraction and purification of biomolecules, engineering of drug carriers, and designing of surface-specific coatings. To understand the adsorption process on the atomic scale, state-of-the-art quantum mechanical and classical simulation methodologies are widely used. However, studying adsorption using a full quantum mechanical treatment is limited to picoseconds simulation timescales, while classical molecular dynamics simulations are limited by the accuracy of the existing force fields. To overcome these challenges, we propose a systematic way to generate flexible, application-specific highly accurate force fields by training artificial neural networks. As a proof of concept, we study the adsorption of the amino acid alanine on graphene and gold (111) surfaces and demonstrate the force field generation methodology in detail. We find that a molecule-specific force field with Lennard-Jones type two-body terms incorporating the 3rd and 7th power of the inverse distances between the atoms of the adsorbent and the surfaces yields optimal results, which is surprisingly different from typical Lennard-Jones potentials used in traditional force fields. Furthermore, we present an efficient and easy-to-train machine learning model that incorporates system-specific three-body (or higher order) interactions that are required, for example, for gold surfaces. Our final machine learning-based force field yields a mean absolute error of less than 4.2 kJ/mol at a speed-up of ∼105 times compared to quantum mechanical calculation, which will have a significant impact on the study of adsorption in different research areas.
Keyphrases