Login / Signup

Energetic constraints on mammalian distribution areas.

Zbyszek Boratyński
Published in: The Journal of animal ecology (2021)
Energy is a universal resource essential for all life functions. The rate of transformation of energy into an organism, and the energetic investment into reproduction, determines population and ecological-level processes. Several hypotheses predicted that the ecological expansion and size of the geographic distribution of a species are shaped by, among other factors, metabolic performance. However, how organismal energetic characteristics contribute to species geographic range size is poorly understood. With phylogenetic comparative methods whether energetic maintenance costs (basal metabolic rate, BMR), aerobic capacity (maximum exercise metabolic rate, VO2 max), summit thermoregulation (summit metabolic rate, VO2 sum) and the ability to sustain energy provisioning (daily energy expenditure, DEE) determine the distribution of mammalian species range sizes was tested. Both basal and maximum exercise metabolic rates (accounting for body mass), but not summit thermogenic metabolic rate, were positively associated with species range sizes. Furthermore, daily energy expenditure (accounting for body mass) was positively associated with species ranges. Body mass (accounting for energetic maintenance) was negatively related to range sizes. High aerobic exercise capacity, aiding mobility such as running and dispersal, and high sustained energy provisioning, aiding reproductive effort such as pregnancy, lactation and natal dispersal, can facilitate the establishment of large mammalian geographic ranges. Consequently, the pace of organismal physiological processes can shape important ecological and biodiversity patterns by setting limits to species' range sizes.
Keyphrases
  • high intensity
  • physical activity
  • climate change
  • human health
  • south africa
  • risk assessment
  • preterm birth
  • human milk
  • drug induced