Login / Signup

Case Study of N-i Pr versus N-Mes Substituted NHC Ligands in Nickel Chemistry: The Coordination and Cyclotrimerization of Alkynes at [Ni(NHC)2 ].

Lukas TenderaMoritz HelmMirjam J KrahfussMaximilian W Kuntze-FechnerUdo Radius
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
A case study on the effect of the employment of two different NHC ligands in complexes [Ni(NHC)2 ] (NHC=i Pr2 ImMe 1Me , Mes2 Im 2) and their behavior towards alkynes is reported. The reaction of a mixture of [Ni2 (i Pr2 ImMe )4 (μ-(η2  : η2 )-COD)] B/ [Ni(i Pr2 ImMe )2 (η4 -COD)] B' or [Ni(Mes2 Im)2 ] 2, respectively, with alkynes afforded complexes [Ni(NHC)2 (η2 -alkyne)] (NHC=i Pr2 ImMe : alkyne=MeC≡CMe 3, H7 C3 C≡CC3 H7 4, PhC≡CPh 5, MeOOCC≡CCOOMe 6, Me3 SiC≡CSiMe3 7, PhC≡CMe 8, HC≡CC3 H7 9, HC≡CPh 10, HC≡C(p-Tol) 11, HC≡C(4-t Bu-C6 H4 ) 12, HC≡CCOOMe 13; NHC=Mes2 Im: alkyne=MeC≡CMe 14, MeOOCC≡CCOOMe 15, PhC≡CMe 16, HC≡C(4-t Bu-C6 H4 ) 17, HC≡CCOOMe 18). Unusual rearrangement products 11 a and 12 a were identified for the complexes of the terminal alkynes HC≡C(p-Tol) and HC≡C(4-t Bu-C6 H4 ), 11 and 12, which were formed by addition of a C-H bond of one of the NHC N-i Pr methyl groups to the C≡C triple bond of the coordinated alkyne. Complex 2 catalyzes the cyclotrimerization of 2-butyne, 4-octyne, diphenylacetylene, dimethyl acetylendicarboxylate, 1-pentyne, phenylacetylene and methyl propiolate at ambient conditions, whereas 1Me is not a good catalyst. The reaction of 2 with 2-butyne was monitored in some detail, which led to a mechanistic proposal for the cyclotrimerization at [Ni(NHC)2 ]. DFT calculations reveal that the differences between 1M e and 2 for alkyne cyclotrimerization lie in the energy profile of the initiation steps, which is very shallow for 2, and each step is associated with only a moderate energy change. The higher stability of 3 compared to 14 is attributed to a better electron transfer from the NHC to the metal to the alkyne ligand for the N-alkyl substituted NHC, to enhanced Ni-alkyne backbonding due to a smaller CNHC -Ni-CNHC bite angle, and to less steric repulsion of the smaller NHC i Pr2 ImMe .
Keyphrases
  • metal organic framework
  • transition metal
  • molecular docking
  • air pollution
  • high resolution
  • molecular dynamics simulations
  • gold nanoparticles
  • single cell
  • reduced graphene oxide