Login / Signup

DynaBiS: A hierarchical sampling algorithm to identify flexible binding sites for large ligands and peptides.

Okke MelseSabrina HechtIris Antes
Published in: Proteins (2021)
Knowing the ligand or peptide binding site in proteins is highly important to guide drug discovery, but experimental elucidation of the binding site is difficult. Therefore, various computational approaches have been developed to identify potential binding sites in protein structures. However, protein and ligand flexibility are often neglected in these methods due to efficiency considerations despite the recognition that protein-ligand interactions can be strongly affected by mutual structural adaptations. This is particularly true if the binding site is unknown, as the screening will typically be performed based on an unbound protein structure. Herein we present DynaBiS, a hierarchical sampling algorithm to identify flexible binding sites for a target ligand with explicit consideration of protein and ligand flexibility, inspired by our previously presented flexible docking algorithm DynaDock. DynaBiS applies soft-core potentials between the ligand and the protein, thereby allowing a certain protein-ligand overlap resulting in efficient sampling of conformational adaptation effects. We evaluated DynaBiS and other commonly used binding site identification algorithms against a diverse evaluation set consisting of 26 proteins featuring peptide as well as small ligand binding sites. We show that DynaBiS outperforms the other evaluated methods for the identification of protein binding sites for large and highly flexible ligands such as peptides, both with a holo or apo structure used as input.
Keyphrases
  • protein protein
  • amino acid
  • machine learning
  • deep learning
  • binding protein
  • drug discovery
  • small molecule
  • risk assessment
  • climate change
  • molecular dynamics simulations
  • neural network
  • single molecule