Login / Signup

Synergistic Effects of Bacteriocin from Lactobacillus panis C-M2 Combined with Dielectric Barrier Discharged Non-Thermal Plasma (DBD-NTP) on Morganella sp. in Aquatic Foods.

Chengjun ShanHan WuJianzhong ZhouWenjing YanJianhao ZhangXiaoli Liu
Published in: Antibiotics (Basel, Switzerland) (2020)
In this paper, Lactocin C-M2(C-M2) was used together with a new non-thermal technology, non-thermal plasma sterilization (NTPS), to inactive the putrefactive bacteria Morganella sp. wf-1 isolated from aquatic foods. The mechanism underlining the action mode of C-M2 and NTPS was investigated, revealing that the bacteriocin and NTPS had synergistic effects on the disinfection of Morganella sp. wf-1. Compared with the bacteria cells treated by only C-M2 or NTPS, the plasmolysis of cells treated by C-M2 and NTPS was to a larger extent. Moreover, the cell permeability and the contents of UV-absorbing compounds and K+ released from the intra-cells was significantly higher for the C-M2 + NTPS treated cells than the others (p < 0.05), and conversely was the SFA/UFA ratio (p < 0.05). The results on DNA damage showed that, 8-hydroxy-2'-deoxyguanosine(8-OHdG) content in C-M2 + NTPS treated cells was approximately 7 -fold and 2.5-fold greater than those in the C-M2- and NTPS-treated cells, respectively, indicating furthermore the eventual rupture of Morganella sp. wf-1 cells. The results showed the potential of the application of the bacteriocin and NTPS in the food industry.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • dna damage
  • oxidative stress
  • endoplasmic reticulum stress
  • stem cells
  • cell death
  • climate change
  • drinking water
  • endothelial cells
  • pi k akt
  • dna repair
  • high speed