Login / Signup

Molecular graph convolutions: moving beyond fingerprints.

Steven M KearnesKevin McCloskeyMarc BerndlVijay PandePatrick Riley
Published in: Journal of computer-aided molecular design (2016)
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.
Keyphrases
  • machine learning
  • convolutional neural network
  • neural network
  • drug discovery
  • single molecule
  • deep learning
  • health information