Login / Signup

Antimicrobial Usage, Susceptibility Profiles, and Resistance Genes in Campylobacter Isolated from Cattle, Chicken, and Water Samples in Kajiado County, Kenya.

Daniel W WanjaPaul G MbuthiaLilly C BeboraGabriel Oluga AbogeBrian Ogoti
Published in: International journal of microbiology (2023)
Campylobacter organisms are the major cause of bacterial gastroenteritis and diarrhoeal illness in man and livestock. Campylobacter is growingly becoming resistant to critically crucial antibiotics; thereby presenting public health challenge. This study aimed at establishing antimicrobial use, susceptibility profiles, and resistance genes in Campylobacter isolates recovered from chicken, cattle, and cattle-trough water samples. The study was conducted between October 2020 and May 2022 and involved the revival of cryopreserved Campylobacter isolates confirmed by PCR from a previous prevalence study in Kajiado County, Kenya. Data on antimicrobial use and animal health-seeking behaviour among livestock owners (from the same farms where sampling was done for the prevalence study) were collected through interview using a pretested semistructured questionnaire. One hundred and three isolates (29 C. coli (16 cattle isolates, 9 chicken isolates, and 4 water isolates) and 74 C. jejuni (38 cattle isolates, 30 chicken isolates, and 6 water isolates)) were assayed for phenotypic antibiotic susceptibility profile using the Kirby-Bauer disk diffusion method for ampicillin (AX), tetracycline (TE), gentamicin (GEN), erythromycin (E), ciprofloxacin (CIP), and nalidixic acid (NA). Furthermore, detection of genes conferring resistance to tetracyclines ( tet (O), β -lactams ( bla OXA -61 ), aminoglycosides ( aph -3-1), (fluoro)quinolones ( gyrA ), and multidrug efflux pump ( cmeB ) encoding resistance to multiple antibiotics was detected by mPCR and confirmed by DNA sequencing. The correlation between antibiotic use and resistance phenotypes was determined using the Pearson's correlation coefficient ( r ) method. Tetracyclines, aminoglycosides, and β -lactam-based antibiotics were the most commonly used antimicrobials; with most farms generally reported using antimicrobials in chicken production systems than in cattle. The highest resistance amongst isolates was recorded in ampicillin (100%), followed by tetracycline (97.1%), erythromycin (75.7%), and ciprofloxacin (63.1%). Multidrug resistance (MDR) profile was observed in 99 of 103 (96.1%) isolates; with all the Campylobacter coli isolates displaying MDR. All chicken isolates (39/39, 100%) exhibited multidrug resistance. The AX-TE-E-CIP was the most common MDR pattern at 29.1%. The antibiotic resistance genes were detected as follows: tet (O), gyrA , cmeB , bla OXA-61 , and aph -3-1 genes were detected at 93.2%, 61.2%, 54.4%, 36.9%, and 22.3% of all Campylobacter isolates, respectively. The highest correlations were found between tet (O) and tetracycline-resistant phenotypes for C. coli (96.4%) and C. jejuni (95.8%). A moderate level of concordance was observed between the Kirby-Bauer disk diffusion method (phenotypic assay) and PCR (genotypic assay) for tetracycline in both C. coli (kappa coefficient = 0.65) and C. jejuni (kappa coefficient = 0.55). The study discloses relatively high resistance profiles and multidrug resistance to antibiotics of critical importance in humans. The evolution of the multidrug-resistant Campylobacter isolates has been linked to the use and misuse of antimicrobials. This poses a potential hazard to public and animal health, necessitating need to reduce the use of antibiotics in livestock husbandry practice coupled with stringent biosecurity measures to mitigate antimicrobial resistance.
Keyphrases