Login / Signup

Holey Assembly of Two-Dimensional Iron-Doped Nickel-Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application.

Ni Luh Wulan SeptianiYusuf Valentino KanetiYanna GuoBrian YuliantoXuchuan JiangYusuke IdeNugraha NugrahaHermawan Kresno DipojonoAibing YuYoshiyuki SugaharaDmitri V GolbergYamauchi Yusuke
Published in: ChemSusChem (2019)
Layered double hydroxides (LDHs) containing first-row transition metals such as Fe, Co, and Ni have attracted significant interest for electrocatalysis owing to their abundance and excellent performance for the oxygen evolution reaction (OER) in alkaline media. Herein, the assembly of holey iron-doped nickel-cobalt layered double hydroxide (NiCo-LDH) nanosheets ('holey nanosheets') is demonstrated by employing uniform Ni-Co glycerate spheres as self-templates. Iron doping was found to increase the rate of hydrolysis of Ni-Co glycerate spheres and induce the formation of a holey interconnected sheet-like structure with small pores (1-10 nm) and a high specific surface area (279 m2  g-1 ). The optimum Fe-doped NiCo-LDH OER catalyst showed a low overpotential of 285 mV at a current density of 10 mA cm-2 and a low Tafel slope of 62 mV dec-1 . The enhanced OER activity was attributed to (i) the high specific surface area of the holey nanosheets, which increases the number of active sites, and (ii) the improved kinetics and enhanced ion transport arising from the iron doping and synergistic effects.
Keyphrases
  • metal organic framework
  • reduced graphene oxide
  • iron deficiency
  • quantum dots
  • gold nanoparticles
  • aqueous solution
  • visible light
  • anaerobic digestion
  • risk assessment
  • drug delivery
  • human health
  • health risk assessment